2,178 research outputs found

    Bathymetric terrain model of the Atlantic margin for marine geological investigations.

    Get PDF
    Bathymetric terrain models of seafloor morphology are an important component of marine geological investigations. Advances in acquisition and processing technologies of bathymetric data have facilitated the creation of high-resolution bathymetric surfaces that approach the resolution of similar surfaces available for onshore investigations. These bathymetric terrain models provide a detailed representation of the Earth’s subaqueous surface and, when combined with other geophysical and geological datasets, allow for interpretation of modern and ancient geological processes. The purpose of the bathymetric terrain model presented in this report is to provide a high-quality bathymetric surface of the Atlantic margin of the United States that can be used to augment current and future marine geological investigations. The input data for this bathymetric terrain model, covering almost 305,000 square kilometers, were acquired by several sources, including the U.S. Geological Survey, the National Oceanic and Atmospheric Administration National Geophysical Data Center and the Ocean Exploration Program, the University of New Hampshire, and the Woods Hole Oceanographic Institution. These data have been edited using hydrographic data processing software to maximize the quality, usability, and cartographic presentation of the combined terrain model

    General Purpose Real-Time Object Tracking using Hausdorff Transforms

    Get PDF
    We describe a real-time computer-vision tracking module capable of using several Hausdorff distance based approaches to localize and match edge models in a scene. The implementation is based on widely supported software and hardware technologies such as Microsoft DirectX/DirectShow, Intel Image Processing and the Open Source Computer Vision libraries

    Quantitative Dark-Field Mass Analysis of Ultrathin Cryosections in the Field-Emission Scanning Transmission Electron Microscope

    Get PDF
    The availability of a cryotransfer stage, highly efficient electron energy loss spectrometers, and ultrathin-window energy-dispersive x-ray spectrometers for the VG Microscopes HB501 field-emission scanning transmission electron microscope (STEM) provides this instrument with the potential for high resolution biological microanalysis. Recent technical advances offer cryosections that are thin enough to take advantage of the analytical capabilities of this microscope. This paper first discusses the quantitative characterization of freeze-dried, ultrathin cryosections of directly frozen liver and brain by low-dose dark-field STEM imaging. Such images reveal high-quality sections with good structural detail, mainly due to reduced preparation artifacts and electron beam damage. These sections are thin enough for dark-field mass analysis, so that the mass of individual organelles can be measured in situ, and their water content deduced. This permits the measurement of mass loss-corrected subcellular elemental concentrations. The results suggest several new applications for cryosections as illustrated by data on synaptic activity-dependent calcium regulation in Purkinje cells of mouse cerebellum. Low-dose mass analysis of cryosections in combination with x-ray and electron spectroscopy is a promising approach to quantitating physiological changes in mass distribution and elemental composition

    Automated feature extraction and spatial organization of seafloor pockmarks, Belfast Bay, Maine, USA

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Geomorphology 124 (2010): 55-64, doi:10.1016/j.geomorph.2010.08.009.Seafloor pockmarks occur worldwide and may represent millions of m3 of continental shelf erosion, but few numerical analyses of their morphology and spatial distribution of pockmarks exist. We introduce a quantitative definition of pockmark morphology and, based on this definition, propose a three-step geomorphometric method to identify and extract pockmarks from high-resolution swath bathymetry. We apply this GIS-implemented approach to 25 km2 of bathymetry collected in the Belfast Bay, Maine USA pockmark field. Our model extracted 1767 pockmarks and found a linear pockmark depth-to-diameter ratio for pockmarks field-wide. Mean pockmark depth is 7.6 m and mean diameter is 84.8 m. Pockmark distribution is non-random, and nearly half of the field's pockmarks occur in chains. The most prominent chains are oriented semi-normal to the steepest gradient in Holocene sediment thickness. A descriptive model yields field-wide spatial statistics indicating that pockmarks are distributed in non-random clusters. Results enable quantitative comparison of pockmarks in fields worldwide as well as similar concave features, such as impact craters, dolines, or salt pools

    Insights into newly discovered marks and readers of epigenetic information

    Get PDF
    The field of chromatin biology has been advancing at an accelerated pace. Recent discoveries of previously uncharacterized sites and types of post-translational modifications (PTMs) and the identification of new sets of proteins responsible for the deposition, removal, and reading of these marks continue raising the complexity of an already exceedingly complicated biological phenomenon. In this Perspective article we examine the biological importance of new types and sites of histone PTMs and summarize the molecular mechanisms of chromatin engagement by newly discovered epigenetic readers. We also highlight the imperative role of structural insights in understanding PTM–reader interactions and discuss future directions to enhance the knowledge of PTM readout

    Morphology and Development of Ice Patches in Northwest Territories, Canada

    Get PDF
    Permanent ice patches in the western Canadian Subarctic have been recently identified as sources of cryogenically preserved artifacts and biological specimens. The formation, composition, and constancy of these ice patches have yet to be studied. As part of the Northwest Territories (NWT) Ice Patch Study, ground-penetrating radar (GPR) and ice coring were used to examine the stratigraphy and internal structure of two ice patches. Results show the patches are composed of a core of distinct offset units, up to several metres thick, covered by a blanket of firn and snow. The interfaces between the units of ice are often demarcated by thin sections of frozen caribou dung and fine sediment. Radiocarbon dates of dung extracted from ice cores have revealed a long history for these perennial patches, up to 4400 years BP. Ice patch growth is discontinuous and occurs intermittently. Extensive time gaps exist between the units of ice, indicating that summers of catastrophic melt can interrupt extended periods of net accumulation. The results of this work not only display the character of ice patch development, but also indicate the significant role that ice patches can play in reconstructing the paleoenvironmental conditions of an area.Récemment, on a déterminé que les névés permanents du subarctique de l’Ouest canadien constituent des sources d’artefacts et de spécimens biologiques préservés cryogéniquement. La formation, la composition et la constance de ces névés n’ont toujours pas été étudiées. Dans le cadre de l’étude des névés des Territoires du Nord-Ouest, on a recouru à des géoradars (GPR) et au carottage de la glace pour examiner la stratigraphie et la structure interne de deux névés. Les résultats indiquent que les névés sont composés d’un noyau d’unités distinctes et décalées, mesurant plusieurs mètres d’épaisseur et recouvertes d’une couverture de vieille neige et de neige. L’interface entre les unités de glace est souvent démarquée par de minces sections de déjections de caribou gelées et de sédiments fins. La datation au radiocarbone des déjections extraites des carottes de glace révèle que ces névés pérennes ont une longue histoire, remontant jusqu’à 4400 ans BP. L’amplification des névés est discontinue et se produit de manière intermittente. Des écarts de temps considérables existent entre les unités de glace, ce qui laisse entendre que des étés de fonte catastrophique peuvent interrompre les périodes prolongées d’accumulation nette. Les résultats de cette étude laissent non seulement entrevoir le caractère de la formation des névés, mais indiquent également le rôle important que les névés peuvent jouer dans la reconstruction des conditions paléoenvironnementales d’une région

    Size distribution of submarine landslides and its implication to tsunami hazard in Puerto Rico

    Get PDF
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 33 (2006): L11307, doi:10.1029/2006GL026125.We have established for the first time a size frequency distribution for carbonate submarine slope failures. Using detailed bathymetry along the northern edge of the carbonate platform north of Puerto Rico, we show that the cumulative distribution of slope failure volumes follows a power-law distribution. The power-law exponent of this distribution is similar to those for rock falls on land, commensurate with their interpreted failure mode. The carbonate volume distribution and its associated volume-area relationship are significantly different from those for clay-rich debris lobes in the Storegga slide, Norway. Coupling this relationship with tsunami simulations allows an estimate of the maximum tsunami runup and the maximum number of potentially damaging tsunamis from landslides to the north shore of Puerto Rico

    Geomorphic characterization of the U.S. Atlantic continental margin

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Marine Geology 338 (2013): 46–63, doi:10.1016/j.margeo.2012.12.008.The increasing volume of multibeam bathymetry data collected along continental margins is providing new opportunities to study the feedbacks between sedimentary and oceanographic processes and seafloor morphology. Attempts to develop simple guidelines that describe the relationships between form and process often overlook the importance of inherited physiography in slope depositional systems. Here, we use multibeam bathymetry data and seismic reflection profiles spanning the U.S. Atlantic outer continental shelf, slope and rise from Cape Hatteras to New England to quantify the broad-scale, across-margin morphological variation. Morphometric analyses suggest the margin can be divided into four basic categories that roughly align with Quaternary sedimentary provinces. Within each category, Quaternary sedimentary processes exerted heavy modification of submarine canyons, landslide complexes and the broad-scale morphology of the continental rise, but they appear to have preserved much of the pre-Quaternary, across-margin shape of the continental slope. Without detailed constraints on the substrate structure, first-order morphological categorization the U.S. Atlantic margin does not provide a reliable framework for predicting relationships between form and process.This work was funded by the USGS Mendenhall Postdoctoral Fellowship Program and the U.S. Nuclear Regulatory Commission

    Geomorphic process fingerprints in submarine canyons

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Marine Geology 337 (2013): 53-66, doi:10.1016/j.margeo.2013.01.005.Submarine canyons are common features of continental margins worldwide. They are conduits that funnel vast quantities of sediment from the continents to the deep sea. Though it is known that submarine canyons form primarily from erosion induced by submarine sediment flows, we currently lack quantitative, empirically based expressions that describe the morphology of submarine canyon networks. Multibeam bathymetry data along the entire passive US Atlantic margin (USAM) and along the active central California margin near Monterey Bay provide an opportunity to examine the fine-scale morphology of 171 slope-sourced canyons. Log–log regression analyses of canyon thalweg gradient (S) versus up-canyon catchment area (A) are used to examine linkages between morphological domains and the generation and evolution of submarine sediment flows. For example, canyon reaches of the upper continental slope are characterized by steep, linear and/or convex longitudinal profiles, whereas reaches farther down canyon have distinctly concave longitudinal profiles. The transition between these geomorphic domains is inferred to represent the downslope transformation of debris flows into erosive, canyon-flushing turbidity flows. Over geologic timescales this process appears to leave behind a predictable geomorphic fingerprint that is dependent on the catchment area of the canyon head. Catchment area, in turn, may be a proxy for the volume of sediment released during geomorphically significant failures along the upper continental slope. Focused studies of slope-sourced submarine canyons may provide new insights into the relationships between fine-scale canyon morphology and down-canyon changes in sediment flow dynamics
    • …
    corecore